Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two florigens and a florigen-like protein form a triple regulatory module at the shoot apical meristem to promote reproductive transitions in rice

Abstract

Many plant species monitor and respond to changes in day length (photoperiod) for aligning reproduction with a favourable season. Day length is measured in leaves and, when appropriate, leads to the production of floral stimuli called florigens that are transmitted to the shoot apical meristem to initiate inflorescence development1. Rice possesses two florigens encoded by HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1)2. Here we show that the arrival of Hd3a and RFT1 at the shoot apical meristem activates FLOWERING LOCUS T-LIKE 1 (FT-L1), encoding a florigen-like protein that shows features partially differentiating it from typical florigens. FT-L1 potentiates the effects of Hd3a and RFT1 during the conversion of the vegetative meristem into an inflorescence meristem and organizes panicle branching by imposing increasing determinacy to distal meristems. A module comprising Hd3a, RFT1 and FT-L1 thus enables the initiation and balanced progression of panicle development towards determinacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatio-temporal regulation of FT-L1 expression.
Fig. 2: Spatial expression of FT-L1 based on reporter lines.
Fig. 3: FT-L1 promotes flowering and panicle determinacy.
Fig. 4: Regulation by SPLs and protein interactions of FT-L1.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this Letter (and its supplementary files). The 3D protein structure of FT-L1 was modelled on the basis of available structural data on monomeric AtFT (PDB ID 6igh.1).

References

  1. Andrés, F. & Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13, 627–639 (2012).

    Article  PubMed  Google Scholar 

  2. Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S. & Shimamoto, K. Hd3a and RFT1 are essential for flowering in rice. Development 135, 767–774 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Tamaki, S., Matsuo, S., Wong, H. L., Yokoi, S. & Shimamoto, K. Hd3a protein is a mobile flowering signal in rice. Science 316, 1033–1036 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Komiya, R., Yokoi, S. & Shimamoto, K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136, 3443–3450 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Wickland, D. & Hanzawa, Y. The FLOWERING LOCUS T/TERMINAL FLOWER1 gene family: functional evolution and molecular mechanisms. Mol. Plant 8, 983–997 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Taoka, K. et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476, 332–335 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Yano, M. et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473–2484 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Whipple, C. J. Grass inflorescence architecture and evolution: the origin of novel signaling centers. N. Phytol. 216, 367–372 (2017).

    Article  Google Scholar 

  9. Gómez-Ariza, J. et al. A transcription factor coordinating internode elongation and photoperiodic signals in rice. Nat. Plants 5, 358–362 (2019).

    Article  PubMed  Google Scholar 

  10. Izawa, T. et al. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev. 16, 2006–2020 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brambilla, V. et al. Antagonistic transcription factor complexes modulate the floral transition in rice. Plant Cell 29, 2801–2816 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goretti, D. et al. Transcriptional and post-transcriptional mechanisms limit Heading Date 1 (Hd1) function to adapt rice to high latitudes. PLoS Genet. 13, e1006530 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tsuda, K., Ito, Y., Sato, Y. & Kurata, N. Positive autoregulation of a KNOX gene is essential for shoot apical meristem maintenance in rice. Plant Cell 23, 4368–4381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Asano, T. et al. Rpp16 and Rpp17, from a common origin, have different protein characteristics but both genes are predominantly expressed in rice phloem tissues. Plant Cell Physiol. 43, 668–674 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, W. et al. Precise and heritable gene targeting in rice using a sequential transformation strategy. Cell Rep. Methods 3, 100389 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gómez-Ariza, J. et al. Loss of floral repressor function adapts rice to higher latitudes in Europe. J. Exp. Bot. 66, 2027–2039 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rigola, D. et al. High-throughput detection of induced mutations and natural variation using KeyPointTM technology. PLoS ONE 4, e4761 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ho, W. W. H. & Weigel, D. Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. Plant Cell 26, 552–564 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pires, D. E. V., Ascher, D. B. & Blundell, T. L. DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 42, W314-9 (2014).

    Article  PubMed  Google Scholar 

  20. Andrés, F. et al. SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the Arabidopsis shoot apex to regulate the floral transition. Proc. Natl Acad. Sci. USA 111, E2760–E2769 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhu, W. et al. Rice SEPALLATA genes OsMADS5 and OsMADS34 cooperate to limit inflorescence branching by repressing the TERMINAL FLOWER1-like gene RCN4. N. Phytol. 233, 1682–1700 (2022).

    Article  CAS  Google Scholar 

  22. Kobayashi, K. et al. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene. Plant Cell 24, 1848–1859 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prasad, K., Parameswaran, S. & Vijayraghavan, U. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J. 43, 915–928 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Lu, Z. et al. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture. Plant Cell 25, 3743–3759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, L. et al. Coordinated regulation of vegetative and reproductive branching in rice. Proc. Natl Acad. Sci. USA 112, 15504–15509 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiao, Y. et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Miura, K. et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545–549 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, L. et al. Bract suppression regulated by the miR156/529–SPLs–NL1–PLA1 module is required for the transition from vegetative to reproductive branching in rice. Mol. Plant 14, 1168–1184 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Cerise, M. et al. OsFD4 promotes the rice floral transition via florigen activation complex formation in the shoot apical meristem. N. Phytol. 229, 429–443 (2021).

    Article  CAS  Google Scholar 

  30. Kaur, A., Nijhawan, A., Yadav, M. & Khurana, J. P. OsbZIP62/OsFD7, a functional ortholog of FLOWERING LOCUS D, regulates floral transition and panicle development in rice. J. Exp. Bot. 72, 7826–7845 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Miki, D., Zhang, W., Zeng, W., Feng, Z. & Zhu, J. K. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat. Commun. 9, 1967 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Miki, D. et al. CRISPR/Cas9-based genome editing toolbox for Arabidopsis thaliana. Methods Mol. Biol. 2200, 121–146 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. AL-Tam, F. et al. P-TRAP: a panicle trait phenotyping tool. BMC Plant Biol. 13, 122 (2013).

    Article  PubMed Central  Google Scholar 

  34. Lowder, L. G. et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 169, 971–985 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Miao, J. et al. Targeted mutagenesis in rice using CRISPR–Cas system. Cell Res. 23, 1233–1236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sahoo, K. K., Tripathi, A. K., Pareek, A., Sopory, S. K. & Singla-Pareek, S. L. An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods 7, 49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Toriba, T. et al. Suppression of leaf blade development by BLADE-ON-PETIOLE orthologs is a common strategy for underground rhizome growth. Curr. Biol. 30, 509–516.e3 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Betti, C. et al. Sequence-specific protein aggregation generates defined protein knockdowns in plants. Plant Physiol. 171, 773–787 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Abbruscato, P. et al. OsWRKY22, a monocot wrky gene, plays a role in the resistance response to blast. Mol. Plant Pathol. 13, 828–841 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Valè, CREA-RIS and the staff of the Botanical Garden ‘Città Studi’ for technical support with the field experiments and the NO LIMITS facility for technical support with confocal microscopy. We thank P. E. Colleoni for support with the molecular studies. This work was supported by the Shanghai Science and Technology Innovation Plan (grant no. 20ZR1467000) to D. Miki, by an ERC Starting Grant (no. 260963) to F.F. and by the Italy–Japan bilateral collaboration programme funded by the Italian Ministry of Foreign Affairs and International Cooperation (Grande Rilevanza, grant no. PGR10047) to F.F.

Author information

Authors and Affiliations

Authors

Contributions

F.G., G.A.B., D. Martignago, Y.M., G.V., T.T., M.C., D.C., M.B., B.K., P.M., D.G. and V.B. performed the expression analyses, generated the transgenic plants, recorded the phenotypes and analysed the data. R.W., D.K. and D. Miki designed and produced the GFP knock-in plants. W.T. and M.K. produced the Volano mutant collection. M.M. performed the field experiments. G.C., V.B., D. Miki and J.K. conceived the experiments. F.F. and F.G. conceived the project and wrote the manuscript.

Corresponding author

Correspondence to Fabio Fornara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Richard Immink and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9.

Reporting Summary

Supplementary Table 1

Pearson correlation coefficients among gene transcripts (FT-L1 versus 728 Affymetrix rice microarrays). Genes indicated in red have been demonstrated to regulate aspects of reproductive (mostly floral) development.

Supplementary Data 1

Statistical source data.

Supplementary Data 2

Unprocessed western blots.

Supplementary Data 3

Primers used in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giaume, F., Bono, G.A., Martignago, D. et al. Two florigens and a florigen-like protein form a triple regulatory module at the shoot apical meristem to promote reproductive transitions in rice. Nat. Plants 9, 525–534 (2023). https://doi.org/10.1038/s41477-023-01383-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01383-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing